Exercise 16

For the following exercises, determine whether there is a minimum or maximum value to each quadratic function. Find the value and the axis of symmetry.

$$
f(x)=-x^{2}+4 x+3
$$

Solution

Begin by factoring the coefficient of x^{2}.

$$
f(x)=-\left(x^{2}-4 x-3\right)
$$

In order to write this quadratic function in vertex form, it's necessary to complete the square, which makes use of the following algebraic identity.

$$
(x+B)^{2}=x^{2}+2 x B+B^{2}
$$

Notice that $2 B=-4$, which means $B=-2$ and $B^{2}=4$. Add and subtract 4 on the right side within the parentheses and use the identity so that x appears in only one place.

$$
\begin{aligned}
f(x) & =-\left[\left(x^{2}-4 x+4\right)-3-4\right] \\
& =-\left[(x+(-2))^{2}-7\right] \\
& =-(x-2)^{2}+7
\end{aligned}
$$

Therefore, the vertex of the parabola is $(2,7)$. The axis of symmetry is $x=2$, and the maximum (because the coefficient of x^{2} is negative) is $y=7$.

